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Abstract
With the popularity of deep neural network, speech synthesis
task has achieved significant improvements based on the end-
to-end encoder-decoder framework in the recent days. More
and more applications relying on speech synthesis technology
have been widely used in our daily life. Robust speech synthe-
sis model depends on high quality and customized data which
needs lots of collecting efforts. It is worth investigating how
to take advantage of low-quality and low resource voice data
which can be easily obtained from the Internet for usage of
synthesizing personalized voice. In this paper, the proposed
end-to-end speech synthesis model uses both speaker embed-
ding and noise representation as conditional inputs to model
speaker and noise information respectively. Firstly, the speech
synthesis model is pre-trained with both multi-speaker clean
data and noisy augmented data; then the pre-trained model is
adapted on noisy low-resource new speaker data; finally, by
setting the clean speech condition, the model can synthesize
the new speakers clean voice. Experimental results show that
the speech generated by the proposed approach has better sub-
jective evaluation results than the method directly fine-tuning
pre-trained multi-speaker speech synthesis model with denoised
new speaker data.
Index Terms: Noise Robust TTS, Mel-spectrogram Denoise
Masks, Low Resourse Personalized TTS

1. Introduction
Text-to-speech (TTS) technology has been widely used in many
products, such as e-books, voice assistants, automatic naviga-
tion, etc. Recently, with the development of neural networks,
end-to-end TTS models, such as Tacotron [1], Char2Wav [2],
DeepVoice3 [3] and Tacotron2 [4] have gradually become main-
stream. End-to-end TTS models using an attention based
encoder-decoder structure, learning patterns from large amount
of data, can produce more natural sound than traditional para-
metric TTS systems [5].

Based on the end-to-end model, many researchers have be-
gun to pay attention to how to control the style, tone, and other
information of synthesized speech. [6] proposed Global Style
Tokens to represent the speech’s style information. [7] ap-
plied variational autoencoder (VAE) to model the distribution of
speech’s style features. As for personalized TTS, [8] introduced
speaker adaptation and speaker encoding approaches for voice
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cloning. As demonstrated in [8], speaker adaptation approach,
which is based on fine-tuning a pre-trained multi-speaker model
for an unseen speaker using a few samples, achieves better per-
formence. Given the abundance of audio and video information
proliferating on the Internet, finding effective way to synthesize
wide variety of personalized sound using widely available low-
quality voice data has become an interesting topic.

Noise Robust TTS — training a stable TTS model on noisy,
low-quality data, has long been of interest to researchers in the
field. Authors in [9] introduced speech enhancement methods
for noise robust TTS. In their solution, an recurisive neural net-
work (RNN) based speech enhancement model is applied to
map acoustic features extracted from noisy speech to features
describing clean speech; the enhanced data is then used to adapt
a pre-trained hidden Markov model (HMM) based TTS acous-
tic model; finally, STRAIGHT [10] vocoder is used to generate
waveform from acoustic features. However, the speaker infor-
mation will more or less been reduced by preprocessing through
speech enhancement model. Besides, due to better effects in
terms of sound quality and naturalness, neural network-based
acoustic models and vocoders have replaced HMM models and
STRAIGHT as mainstream.

To leverage low-quality crowd-sourced data to train multi-
speaker TTS models that can synthesize clean speech for all
speakers, based on Tacotron2, [11] introduced conditional gen-
erative reference encoders and adversarial training to learn dis-
entangled representations to independently control the speaker
identity and background noise in generated signals. The method
applies speaker encoder to learn speaker related variable zs, and
residual encoder to extract variable zr to model unlabelled at-
tributes (e.g. acoustic conditions). As the speaker encoder is
followed by speaker classifier and gradient reversal layer fol-
lowed with augmentation classifier, zs respresents noise-free
speaker related information; zr represents noise related infom-
ration. However, the noise signal is not always stable, which
varies along with time. Therefore a fixed-length vector is not
enough to model the noise information, especially in the case of
speech data with low signal-to-noise ratio (SNR).

Recently, neural network-based methods using masks have
achieved excellent results in tasks such as speech enhance-
ment and speech separation, and have become mainstream
[12, 13]. Inspired by these works, we use variable-length Mel-
spectrogram denoise masks instead of a fixed-length vector as
the representation of noise information. We assumed that the
noisy speech is generated by the noise signal adding to clean
speech, so for each point in the Mel frequency domain, the
energy E contains the energy of the clean speech Es, and
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the energy of the noise signal En. So the value of the Mel-
spectrogram denoise mask of the corresponding point is calcu-
lated by Es/E. In this paper, based on voice cloning frame-
work, we adopt the Mel-spectrogram denoise masks (includ-
ing noisy masks for noisy speechs and clean masks for clean
speechs) as noise representation which conditions on the end-
to-end speech synthesis model, and pre-train the TTS model on
multi-speaker’s enhancement data for noise robust personalized
TTS. Our work is summarized in the following three aspects:

1. The proposed method uses both the speaker embedding
and the noise representation as conditional inputs of the
basic end-to-end speech synthesis model to achieve in-
dependent control of the synthesized speech with noise
and different speakers. After being pre-trained on multi-
speaker enhancement data, model is adapted on low-
quality new speaker’s data and can synthesize clean
speech for the new speaker.

2. The proposed model uses Mel-spectrogram denoise
masks as the noise representation. Compared with a
fixed-length vector, Mel-spectrogram denoise mask can
better characterize the noise information. The model is
pre-trained on both noisy and clean multi-speaker data.
The noise representation includes noisy masks (extracted
from noisy speech) and clean masks (all elements equal
to 1). The model accepts noisy masks as conditional
input to generate speech with corresponding noise, and
similarly accepts clean masks to generate clean speech.
When the noise representation varies from noisy masks
to clean masks, the generated speech changes from noisy
to clean.

3. The proposed model accepts the features extracted
by the pre-trained speaker recognition model as the
speaker embedding, and the TTS model is pre-trained
on multi-speaker voice data, which realizes personalized
speech synthesis for low-quality low-resource new un-
seen speaker’s data.

2. Methodology
2.1. Proposed Approach

As depicted in Figure 1, the proposed approach consists of three
stages:

1. The pre-training stage: The end-to-end TTS model is
pre-trained on clean and noisy multi-speaker voice data.
The model accepts speaker embedding and noise rep-
resentation as conditional inputs. The speaker embed-
ding is extracted via a speaker recognition model, and
the noise representation is the Mel-spectrogram denoise
masks, including noisy masks and clean masks. The
noisy masks is the predicted Mel-spectrogram denoise
masks extracted by a speech enhancement model from
noisy speech, while the clean masks is corresponding to
clean speech whose value all equals to 1.

2. The adaptation stage: The pre-trained model is adapted
on the new low-quality low-resource speaker data. The
new speaker data only contains noisy speech, so the
noise representation only contains noisy masks.

3. The inference stage: The adapted model accepts clean
masks as conditional input to synthesize clean voice of
the new speaker. Where clean masks represents the
Mel-spectrogram denoise masks of clean speech, and the
value of each element is set to 1.

Text
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Figure 1: The proposed approach

The following sections will describe the speaker embedding
and noise representation extraction, as well as the details of the
model.

2.2. Speaker Embedding Extraction

In order to preserve the relative relationship between different
speakers and deal with unseen speakers more conveniently, in-
stead of using one-hot encoding directly, the speaker embed-
ding is extracted by a speaker recognition model, which is pre-
trainded on an internal dataset containing about 20,000 speak-
ers. We apply the approach in [14] to implement the speaker
recognition model, which consists of a modified ResNet [15] in
a fully convolutional way to extract frame-level features and a
following GhostVLAD [16] layer for feature aggregation along
the temporal axis. To extract more discriminative speaker em-
bedding, additive margin softmax [17] is adopted to train the
speaker recognition model.

2.3. Noise Representation Extraction

Inspired by recent advancement in speech enhancemet [12, 18],
we apply Mel-spectrogram denoise masks as noise representa-
tion to model the noise information. The Mel-spectrogram de-
noise masks is extracted by a speech enhancement model which
accepts Mel-spectrogram as input, the model structure is a vari-
ant of the CNN-RNN-FC structure, and it is very similar to the
model in [18]. Compared with [18], the proposed model has
following three main differences:

1. The input feature of the model is Mel-spectrogram in-
stead of log spectrogram.

2. The LSTM layer is replaced with DFSMN [19], which
can reduce the model size (from about 26M parameters
to about 4.76M). Meanwhile, the inference speed is im-
proved by about 9x due to the reason that computation
of DFSMN layer can be parallelized (speed testing is
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Figure 2: Speaker embedding as the conditional input to en-
coder

benchmarked on Nvidia T1080).

3. The activation function of the output layer is sigmoid,
and its output is assumed to be M . Since mean
square error (MSE) is enough to extract effective Mel-
spectrogram denoise masks according to our experi-
ments, we directly use MSE as the model’s loss func-
tion as shown in Equation 1, where Snoise denotes
the Mel-spectrogram of noisy speech, Sclean denotes
the corresponding clean speech’s Mel-spectrogram. �
means element-wise multiply, Snoise � M represents
the denoised Mel-spectrogram. n is the number of Mel-
spectrogram’s TF-bins.

Lmse =

∑
‖Snoise �M − Sclean‖2

n
(1)

2.4. Noise Robust Personalized TTS Model

2.4.1. Basic TTS model

We use an encoder-decoder-based Tacoton-like end-to-end neu-
ral network as the basic TTS model. Compared with the orig-
inal Tacotron [1], two improvements have been made. Firstly,
GMM-based attention [20] is applied for improving the stabil-
ity of the synthesis and reducing bad cases. Secondly, in or-
der to imporve the quality of the synthesized sound, we use
a neural network-based vocoder to generate sound from Mel-
spectrogram just like what Tacotron2 [4] does, so the outputs of
PostNet is log-level Mel-spectrogram instead of linear spectro-
gram, and the model is optimized by both before loss and after
loss. More details about the decoder will be described in section
2.4.3.

2.4.2. Speaker embedding condition

In order to control the speaker characteristics of the synthesized
speech, the speaker embedding is taken as the conditional input
of the encoder of the TTS model. As shown in Figure 2, in
addition to concatenating with the encoder outputs, the speaker
embedding will also pass through two dense layers respectively,
then adopted as the additional conditional inputs for Highway
Network and the initial value of the GRU layer.

2.4.3. Noise representation condition

To model the noise information, we use noise representation
(Mel-spectrogram denoise masks, extracted from the speech
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Figure 3: Noise representation as the conditional input to de-
coder

enhancement model) as the conditional input of the decoder.
Shown in Figure 3, the decoder is an autoregressive structure,
which is composed of Pre-Net, Attention RNN layer, Decoder
RNN layer, Linear Projection layer, Stop Token Projection layer
and Post-Net.

In our model, Post-Net is used to model noise information.
In order not to introduce noise information in other parts of
the decoder, we use denoised Mel-spectrogram or clean Mel-
spectrogram as the target output of the Linear Projection layer
to calculate the Before Loss (showed in Figure 3). The Post-
Net accepts both processed noise representation and the out-
put of Linear Projection layer as input, whose outpus is added
to the output of Linear Projection layer to predict the original
Mel-spectrogram and calculate the After Loss. Since the TTS
model outputs log-level Mel-spectrograms, before concatenat-
ing to the Linear Projection layer’s output as Post-Net’s input,
the noise representation is first clipped to a value between 0.1
and 1, then converted to log level, and finally normalized to a
value between -4 and 4.

The model is pre-trained on multi-speaker clean data and
noisy augmented data, where the noisy augmented speech data
is generated from the clean speech data mixed with the noise
signal, and each augmented utterance has its corresponding
clean speech. So in the pre-training stage, the model calcu-
lates the Before Loss according to the clean Mel-spectrogram
that is obtained from the corresponding clean speech. And in
the adaptation stage, the Before Loss is calculated according to
the denoised Mel-spectrogram that is obtained from the speech
enhancement model and the corresponding noisy speech.

3. Experiments and Analysis
3.1. Experimental Setup

First of all, we add the noise signal from Audio Set [21] to an
internal clean multi-speaker TTS corpus to generate a noisy
augmented multi-speaker corpus. The proposed model uses
both the clean and the noisy augmented corpus during pre-
training. The clean multi-speaker TTS corpus contains about
1100 speakers, each speaker has about 30 minutes of voice
data. Then, the model is adapted on the low-resouce low-quality
new speaker data. In our experiments, four new speaker’s data
is adopted, each speaker contains 200-300 utterances, and the
low-quality data is constructed based on the Microsoft Scalable



Noisy Speech Dataset [22], ensuring that the SNR of each ut-
terance is less than 5dB.

In order to verify the effect of our proposed model, we use
the approach of denoise and then synthesis as baseline. The
model of baseline method is the same of the proposed, except
that Post-Net only accepts the output of the Linear Projection
layer as the input instead of concatenating the Mel-spectrogram
denoise masks. The baseline model is only pre-trained on
clean multi-speaker data, and the denoised new speaker’s Mel-
spectrogram processed by the speech enhancement model is
used for adaptation. In baseline, we utilized the denoised Mel-
spectrogram instead of the original noisy Mel-spectrogram for
adaptation as the speech synthesized by the following approach
is much worse.

At first, a speech enchancement model need to be pretrained
for both baseline and the proposed approach. In our experi-
ments, we train the Mel-specdtrogram level enhancement model
based on noisy multi-speaker TTS data and its corresponding
clean data. Then the Mel-spectrogram denoise masks predicted
by the speech enhancement model are used as the condition in-
put of the proposed model, and the denoised Mel-spectrogram
obtained by the enhanced model is used for the adaptation of
baseline method.

3.2. Experimental Results and Analysis

We first verified the effect of the speech enhancement model,
which is the basis for noise robust TTS. The speech enhance-
ment model was tested under different SNRs, including -5dB,
0dB and 5dB. Under each SNR setting, there are 61 noisy
voices generated with another internal noise sets. The scale-
invariant signal-to-distortion ratio (SI-SDR) [23] calculated on
Mel-spectrogram is adopted as metric and shown in Table 1. It
can be seen from Table 1 that the speech enhancement model
can significantly reduce the noise in speech, especially in the
case of low SNR.

Table 1: SI-SDR(db) result of our speech enhancement model
on different SNR levels

SNR SI-SDR

−5 3.787
0 7.154
5 8.694

An illustration of the enhanced Mel-spectrogram on -5dB
utterance is shown in Figure 4. From Figure 4, we can see
that some voice information contained in the original Mel-
spectrogram was reduced by the speech enhancement model
(marked with a red rectangle), indicating that adapting TTS
model directly on the denoised data will result in unstable voice.
Comparing Figure 4-(c) with Figure 4-(a) and Figure 4-(b), it
can be seen that Mel-spectrogram denoise masks could well
represent noise information, which is the reason why we adopt
Mel-spectrogram denoise mask (noise representation) as the de-
coder’s condational input.

We synthesized 40 utterances with the same content for 4
new speakers under baseline and proposed approach respec-
tively, meaning 40 x 4 x 2 utterances were synthesized1. We
conducted mean opinion score tests, where 40 people were
asked to evaluate synthesized speech in therm of speech qual-
ity. Each person was asked to score randomly selected 40 unt-

1https://noisetaco.github.io/noisetaco/

(a) The Original  Mel-spectrogram

(b) The Denoised  Mel-spectrogram

(c) The Mel-spectrogram Denoise Masks

Figure 4: The speech enhancement result and Mel-spectrogram
denoise masks

terances from the total 320 ones. The score ranges from 1 to 5,
where 1 represents the worst and 5 represents the best.

Table 2: The MoS result in term of speech quality

Baseline Proposed

Speaker1 3.018 3.227
Speaker2 3.462 3.560
Speaker3 3.139 3.181
Speaker4 3.313 3.424

The mean opinion score of each setting is shown in the Ta-
ble 2. It can be seen that with the proposed method, the speech
quality of each speaker is improved compared with the baseline.
The score value has improved by an average of 0.115. The re-
sults demonstrate that our model can synthesize higher quality
speech with low-resource low-quality data. We speculate that
this is due to the denoise Mel-spectrogram used directly by the
baseline loses some voice information, which leads to the insta-
bility of speech synthesis.

4. Conclusion
In this paper, we propose a novel method for synthesizing per-
sonalized speech based on the end-to-end network model in the
case of low quality and low resources data. The model ac-
cepts speaker embedding and Mel-spectrogram denoise mask as
the conditional input, for modeling speaker and noise informa-
tion respectively. The model is first pre-trained on clean multi-
speaker data and augmented noisy multi-speaker data, then
adapted on the low-resource low-quality new-speaker data, and
finally utilized to synthesize clean voices of the new speaker.
Experimental and subjective evaluation results show that the
proposed approach can synthesize better speech compared to
baseline method, which fine-tunes the pre-trained multi-speaker
TTS model on the denoised new speakers data directly.
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